1.了解圆周角的概念.
2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
4.熟练掌握圆周角的定理及其推理的灵活运用.
设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题
学习过程
一、 温故知新:
(学生活动)同学们口答下面两个问题.
1.什么叫圆心角?
2.圆心角、弦、弧之间有什么内在联系呢?
二、 自主学习:
自学教材p90---p93,思考下列问题:
1、 什么叫圆周角?圆周角的两个特征: 。
2、 在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题.
(1)一个弧上所对的圆周角的个数有多少个?
(2).同弧所对的圆周角的度数是否发生变化?
(3).同弧上的圆周角与圆心角有什么关系?
3、默写圆周角定理及推论并证明。
4、能去掉"同圆或等圆"吗?若把"同弧或等弧"改成"同弦或等弦"性质成立吗?
5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?
三、 典型例题:
例1、(教材93页例2)如图, ⊙o的直径ab为10cm,弦ac为6cm,,∠acb的平分线交⊙o于d,求bc、ad、bd的长。
例2、如图,ab是⊙o的直径,bd是⊙o的弦,延长bd到c,使ac=ab,bd与cd的大小有什么关系?为什么?
四、 巩固练习:
1、(教材p93练习1)
解:
2、(教材p93练习2)
3、(教材p93练习3)
证明:
4、(教材p95习题24.1第9题)
五、 总结反思:
达标检测
1.如图1,a、b、c三点在⊙o上,∠aoc=100°,则∠abc等于( ).
a.140° b.110° c.120° d.130°
(1) (2) (3)
2.如图2,∠1、∠2、∠3、∠4的大小关系是( )
a.∠4<∠1<∠2<∠3 b.∠4<∠1=∠3<∠2
c.∠4<∠1<∠3∠2 d.∠4<∠1<∠3=∠2
3.如图3,(中考题)ab是⊙o的直径,bc,cd,da是⊙o的弦,且bc=cd=da,则∠bcd等于( )
a.100° b.110° c.120° d.130°
4.半径为2a的⊙o中,弦ab的长为2 a,则弦ab所对的圆周角的度数是________.
5.如图4,a、b是⊙o的直径,c、d、e都是圆上的点,则∠1 ∠2=_______.
(4) (5)
6.(中考题)如图5, 于 ,若 ,则
7.如图,弦ab把圆周分成1:2的两部分,已知⊙o半径为1,求弦长ab.
拓展创新
1.如图,已知ab=ac,∠apc=60°
(1)求证:△abc是等边三角形.
(2)若bc=4cm,求⊙o的面积.
3、教材p95习题24.1第12、13题。
布置作业教材p95习题24.1第10、11题。